
The MolSSI Framework for
Atomistic Simulations and

Workflows
Paul Saxe, MolSSI

psaxe@vt.edu https://molssi.org

mailto:psaxe@vt.edu
https://molssi.org/

Outline of talk

´ Introduction to MolSSI

´ Industry Needs

´ Motivation for a workflow framework

´ Workflow Framework

´ Summary

Introduction to the Molecular
Sciences Software Institute (MolSSI)

What is the MolSSI?

´ Launched August 1st, 2016
´ Funded by the National Science Foundation
´ Collaborative effort by

Virginia Tech T.D. Crawford
Rice U. C. Clementi
Stony Brook U. R. Harrison
U.C. Berkeley T. Head-Gordon
Stanford U. V. Pande
Rutgers U. S. Jha
U. Southern California A. Krylov
Iowa State U T. Windus

12 Software Scientists
8 currently, 2 more hired and 2 open positions

Doaa Altarawy Paul Saxe Eliseo Marin-Rimoldi Taylor Barnes

Ben Pritchard Daniel Smith Jessica Nash Jonathan Moussa

21 Software Fellows
´ Next call mid-August´ 6 month initial phase

´ Possibility of further 18 months

´ Open to graduate students and
postdocs at US institutions

What is the MolSSI?

´ Joint support from several NSF divisions:
´ Advanced Cyberinfrastructure (ACI)

´ Chemistry (CHE)

´ Division of Materials Research (DMR)

´ Designed to serve and enhance the software development efforts
of the broad field of computational molecular science.

Industry Needs
How do we find out?

Mike Abbott Lisa Garcia

Innovation. How to?

Mary Miller

“The first principle is
that you must not

fool yourself

– Richard Feynman

“The first principle is
that you must not

fool yourself,
and you are the
easiest person to

fool.”

– Richard Feynman

Interview
Count

Total 27 5 16 6

Who we talked to (so far…)

ScientistsManagers

Senior
Managers

What have we learned?

´ Experimentalists are strongly skeptical of atomistic modeling
The value of modeling must be demonstrated time and time again

´ Time-to-solution is absolutely critical
Solving the problem after the project has moved on is useless!

´ Modeling experts shouldn't program
Programming or scripting is a necessary evil

´ Needed accuracy varies greatly depending on the problem (and time!)
Need the entire range of tools at hand

´ Many companies are trying to seamlessly integrate modeling & experiment
One approach, not two!

Motivation for a Workflow Framework

Areas we Need to Improve

´ Improved science

´ Reproducibility

´ Reducing errors

´ New tools and applications

´ Acknowledgement: citations

´ Productivity

´ Automation

´ Ease-of-use

´ Efficient use of resources

Reproducibility

J. Chem. Theory Comput., 2017, 13 (9), pp 4270–4280
DOI: 10.1021/acs.jctc.7b00489

What is Reproducibility?

´ Ability to mechanically reproduce a given simulation ✓
´ Ability for someone else to recreate a simulation ?

´ Ability for someone else to reproduce, then change, a simulation ??

Ease-of-Use

Gaussian 76 input “deck”

Column
Guide

Gaussian 8X (or 16) Input File

HF/STO-3G(d)
water energy
0 1
O
H 1 0.96
H 1 0.96 2 109.471

HF/STO-3G(d)
water energy
0 1
O
H 1 0.96
H 1 0.96 2 109.471

Keywords rather than numbers at positions

Element symbols instead of atomic numbers

Free format!

Fixed format!

GAMESS 2005 … or 2016

$CONTRL SCFTYP=RHF RUNTYP=ENERGY $END
$BASIS GBASIS=STO NGAUSS=3 $END
$DATA
STO-3G TEST CASE FOR WATER
Cnv 2
Oxygen 8.0 0.0 0.0 0.0
Hydrogen 1.0 -0.758 0.0 0.545
$END

GAMESS has >1000
keywords!

LAMMPS – Molecular Dynamics
Rhodopsin model

units real
neigh_modify delay 5 every 1

atom_style full
bond_style harmonic
angle_style charmm
dihedral_style charmm
improper_style harmonic
pair_style lj/charmm/coul/long &

8.0 10.0
pair_modify mix arithmetic
kspace_style pppm 1e-4

read_data data.rhodo

fix 1 all shake 0.0001 5 0 m 1.0 a 232
fix 2 all npt temp 300.0 300.0 100.0 &

z 0.0 0.0 1000.0 mtk no pchain 0 &
tchain 1

special_bonds charmm

thermo 50
thermo_style multi
timestep 2.0

run 100

LAMMPS data file from restart file: timestep = 5000,
procs = 1

32000 atoms
27723 bonds
40467 angles
56829 dihedrals
1034 impropers

68 atom types
115 bond types
243 angle types
453 dihedral types
19 improper types

-27.5 27.5 xlo xhi
-38.5 38.5 ylo yhi
-36.3646 36.3615 zlo zhi

Masses

1 1.008
2 1.008
3 1.008
4 1.008
5 1.008
6 1.008
…

191,072 lines!

6.3 MB

Angle Coeffs

1 52 112.3 0 0
2 50 112 0 0
3 50 108.2 0 0
4 52 108 0 0
5 52 108 0 0
6 52 108 0 0
7 50 109.5 0 0
8 50 107 0 0
…
237 145 108 0 0
238 120 120 0 0
239 98.9 111.6 0 0
240 90 125.9 160 2.2576
241 90 125.9 160 2.2576
242 100 124 70 2.225
243 80 104.3 0 0

Dihedral Coeffs

1 0.14 3 0 1
…

We can do better!

https://seagrid.org/home

Possibility: Python UI, à la pymatgen
>>> lattice = mg.Lattice.cubic(4.2)
>>> structure = mg.Structure(lattice, ["Cs", "Cl"],
... [[0, 0, 0], [0.5, 0.5, 0.5]])
>>> structure.volume
74.088000000000008
>>> structure[0]
PeriodicSite: Cs (0.0000, 0.0000, 0.0000) [0.0000, 0.0000, 0.0000]
>>>
>>> # You can create a Structure using spacegroup symmetry as well.
>>> li2o = mg.Structure.from_spacegroup("Fm-3m", mg.Lattice.cubic(3),
["Li", "O"],
[[0.25, 0.25, 0.25], [0, 0, 0]])
>>>
>>> # Integrated symmetry analysis tools from spglib.
>>> from pymatgen.symmetry.analyzer import SpacegroupAnalyzer
>>> finder = SpacegroupAnalyzer(structure)
>>> finder.get_spacegroup_symbol()
'Pm-3m'
>>>
>>> # Convenient IO to various formats. You can specify various formats.
>>> # Without a filename, a string is returned. Otherwise,
>>> # the output is written to the file. If only the filenmae is provided,
>>> # the format is intelligently determined from a file.
>>> structure.to(fmt="poscar")
>>> structure.to(filename="POSCAR")
>>> structure.to(filename="CsCl.cif")
>>>
>>> # Reading a structure is similarly easy.
>>> structure = mg.Structure.from_str(open("CsCl.cif").read(), fmt="cif")
>>> structure = mg.Structure.from_file("CsCl.cif")

…or Atomic Simulation Environment
(ASE)

>>> # Example: structure optimization of hydrogen molecule
>>> from ase import Atoms
>>> from ase.optimize import BFGS
>>> from ase.calculators.nwchem import NWChem
>>> from ase.io import write
>>> h2 = Atoms('H2',
... positions=[[0, 0, 0],
... [0, 0, 0.7]])
>>> h2.calc = NWChem(xc='PBE')
>>> opt = BFGS(h2)
>>> opt.run(fmax=0.02)
BFGS: 0 19:10:49 -31.435229 2.2691
BFGS: 1 19:10:50 -31.490773 0.3740
BFGS: 2 19:10:50 -31.492791 0.0630
BFGS: 3 19:10:51 -31.492848 0.0023
>>> write('H2.xyz', h2)
>>> h2.get_potential_energy()
-31.492847800329216

…or Jupyter Notebooks?

Approaches

´ Gateway / Portal

´ Dialogs and perhaps 3-D graphics
(GUI)

´ No programming

´ Can handle all types of
reproducibility

´ Good GUIs are difficult work

´ Concern that is “black box”

´ Programming API

´ An API for Python or similar

´ Requires reasonable
programming skills

´ May handle some reproducibility

´ Good documentation is difficult
work

´ Concern over too much flexibility
(where do I begin?)

How do we put this on the computer?

Like this?

Editable
flowchart

Dialog for setting
parameters in
node

Workflow Framework

What does the user require?
´ Complete environment

´ Builders, editors, database retrieval etc. for model preparation

´ Wide range of simulation tools

´ Analysis tools

´ Saving results to files, databases

´ Creating graphs and other visual representations such as movies

´ Control structures, decision handling, error capture, etc.

´ Seamless integration with computing resources

´ Easy to use, learn, install and manage

´ Publishing, including proper citations

´ Shareable protocols

´ Reproducibility

What does the framework itself require?

´ Application agnostic … but “knows” chemistry

´ Long lasting – certainly 15 years, preferably longer.

´ As light as possible

´ As simple as possible, with extensible APIs

´ Support for multiple underlying computational “workflow” management
systems

´ Dispersed development of application portion (plugins?)

´ Large developer community

´ Larger user community!

Empty Framework

Codes like
LAMMPS with
an internal
language can
be handled
with sub-
flowcharts

Plugins add
functionality
“automatically”

The Framework Provides

´ Mechanism for plugging in modules

´ Containers for the GUI

´ Commonly used data structures (workflow, molecule,…)

´ Connections to the database & computational resources

´ Well-defined API with utility libraries

´ Saving and restoring workflows

´ Citation manager

… almost nothing that a user sees!

Must not change often or much!

Other groups provide plugins

´ (Almost) completely independent of each other

´ Are responsible for everything in their plugin!

´ There can be multiple different plugins for a code

´ There can be multiple codes fronted by one plugin

´ Doesn’t have to wrap a code (if the task is quick)

´ Can be developed by anyone, does not have to be the simulation code
developers.

Recap: Areas to Improve

´ Improved science

´ Reproducibility ✓
´ Reducing errors ✓
´ New tools and applications (yes

Makes it easier to mix, match and
combine. Quite complex simulations
can be captured in workflows,
though adding translators and tools
(plugins) will be needed sometimes.)

´ Acknowledgement: citations ✓

´ Productivity

´ Automation ✓
´ Ease-of-use ✓
´ Efficient use of resources (yes

Since all simulations funnel through
one submission section, more
opportunities to pick computers, set
tuning parameters.)

Summary

´ Neutral framework for atomistic simulations

´ Uses plugins to decentralize

´ Provides central concept of a “system”

´ Multiple frontends supports (application, web portal,…)

´ Provides support libraries – cheminformatics, statistics, graphing, …

´ Provides citation manager (but plugins have to do their part!)

´ Hides complexity of job submission

´ Stores all results in a personal or group local datastore

´ Open source

You can help!

I want to create a community to guide this!

I haven’t figured out the best way – suggestions?
Email? Slack? Google Docs?

So, for the moment, email me to be included

psaxe@vt.edu

